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Abstract

This report describes the experiments performed for the project assigned in the Advanced Networking course
during the 2011-2012 academic year.
Our aim was to conduct some tests, in different scenarios, of the TCP Westwood+ congestion control algorithm.
Then we will show its advantages and disadvantages and a comparison with the one described in the TCP CUBIC
protocol.
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Premise: unless we are focusing on a specific version of TCP Westwood, we will use ”TCP Westwood” meaning
either TCP Westwood or TCP Westwood+.

Introduction
In the base version of the TCP congestion control [1][2], they use an additive increase/multiplicative decrease (AIMD)
sliding windows algorithm to avoid network congestion.
TCP uses a variable, called congestion window (cwnd), as senders estimation of how much data can be outstanding in
the network without packets being lost. The cwnd is firstly set to one or two segments and then increased following
either the slow start algorithm or the congestion avoidance phase. A variable called slow start threshold is used to
determine whether the slow-start or congestion avoidance algorithm is used to control data transmission.
The two phases are described as follows:

1. Slow-start phase (when cwnd < sstresh):the cwnd is increased exponentially, by one segment for each
incoming acknowledgement (ACK).

2. Congestion avoidance phase (when cwnd ≥ sstresh): the cwnd is increased linearly, at the rate of one
segment per round-trip-time (RTT).

The sender becomes aware of a congestion when it receives 3 duplicate acknowledgements (DUPACK), which are
generated by the receiver when it receives out-of-order segments, or when we are in the case of ”heavy congestion”
(e.g timeout expiration). In both cases, the sender retransmits a segment and sets ssthresh to half of the amount
of currently outstanding data. The cwnd is then set to the value of ssthresh plus three segments in the first case
or set equal to 1 in the other one. The retransmission due to incoming duplicate ACKs is called fast retransmit. After
this phase, the TCP sender follows the fast recovery algorithm until all segments in the last window have been ac-
knowledged. The number of outstanding segments is maintained by sending a new segment for each incoming ACK,
if permitted by the congestion window value. The congestion window is temporarily increased for each incoming
duplicate ACK to permit forward transmission of a segment. When the fast recovery phase is over its value is set to
the number of segments at the beginning of the fast recovery.

Much research has been done about this topic and it has demonstrated how this algorithm could actually be en-
hanced, using other techniques or approaches, to fit all scenarios. The one on which we focused our project was TCP
Westwood and in particular its improved version, Westwood+.
In most of the research papers which we have considered during our studies [4][5], the authors only performed a
comparison between TCP Westwood and Reno. In these works, they performed various tests, trough either a link
emulator or the real Internet, showing how Westwood is generally more efficient in networks with random rates of
packet loss and how it is more fair in congested networks (e.g xDSL). Our purpose was updating these evaluations of
TCP Westwood performing other tests in other scenarios and comparing TCP Westwood with the protocols which are
mainly used nowadays.

In this report, we will describe TCP Westwood+ and TCP Cubic, the protocol used as its competitor in our tests, in
the first two chapters. We will then show how we made our analysis in the 3rd chapter. All results and our reflection
on them will continue in the following 4th and 5th chapters.

1 TCP Westwood+
TCP Westwood is a modification to TCP New Reno, which works only on the sender side, that aims to handle better
those paths with high bandwidth-delay product (large pipes), with potential packet loss due to transmission or other
errors (leaky pipes), and with dynamic load (dynamic pipes).
It uses an additive increase/adaptive decrease (AIAD) paradigm instead of the usual AIMD, which does not change
the increasing window phase, but try to adaptively set the congestion window, when a congestion episode occurs, ex-
ploiting the stream of returning acknowldgement packets to estimate the available bandwidth for the TCP connection.
It was developed in the 2001[4] and then improved in its current updated version Westwood+ [5].
The algorithm is the following:
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- When 3 DUPACKs are received by the sender:

ssthresh =(B*RTTmin)/seg_size;
if ssthresh<2 then ssthresh=2;
cwnd = ssthresh;

- When a coarse timeout expires:

ssthresh =(B*RTTmin)/seg_size;
if ssthresh<2 then ssthresh=2;
cwnd = 1;

- When ACKs are successfully received:

cwnd increases following the Reno algorithm.

The estimated bandwidth is given as result of a filtering process, using the following discrete time-varying low-pass
filter,

b̂k =
2τ − ∆k

2τ + ∆k
b̂k−1 +

∆k

2τ + ∆k
(bk + bk−1)

where ∆k is the inter-arrival time between the (k − 1)th and the kth sample and τ is the cut-off frequency of the
filter.

In the original version of TCP Westwood, the sample bk = dk/tk − tk−1 was computed every time an ACK
is received. In [5], it is shown how the filter shown above overestimates the bandwidth in the presence of ACK
compression provoked by reverse traffic. In TCP Westwood+, this problem is avoided computing bk every RTT,
instead of every time an ACK is received by the sender. In other words, we calculate bk = Dk/∆k as input for
the filter, where Dk is the amount of data acknolewdged during the last RTT (Dk), to cut off the high frequency
components due to the ACK compression.

2 TCP CUBIC
TCP CUBIC[3] is a different version of TCP with a congestion control algorithm optimized for high speed networks
with high latency1. It is fundamentally an enhancement of TCP BIC which uses the following cubic window growth
function instead of the linear one described in the TCP Reno/NewReno protocol.
The function is the following:

Wcubic = C(t−K)3 +Wmax

where C is a scaling factor, t is the elapsed time from the last window reduction, Wmax is the window size just
before the last window reduction and

K = 3
√
Wmaxβ/C

.
Since TCP CUBIC does not depend on the RTT but only on the last congestion event, it is more fair than the

standard TCP. Indeed, if there are multiple standard TCP flows with different RTTs, those with very short RTTs will
receive ACKs faster and therefore have their congestion windows grow faster than other flows with longer RTTs. This
does not happen with TCP CUBIC because it is completely indipendent of ACKs reception and RTTs.

It is also the implementation of TCP currently used by default in Linux kernels 2.6.19 and above, and then used
for our tests.

1Also called ”Long Fat Networks” (LFN), they have a bandwidth-delay product which is significantly larger than 105 bits. See http://
tools.ietf.org/html/rfc1072
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3 Experimental Analysis
We will now describe how we performed our analysis, evaluating TCP Westwood+ alone and compared to TCP Cubic.
We will firstly describe the various tools and scripts used during our tests and secondly the scheme of our infrastructure.

3.1 Tools
3.1.1 Iperf

Iperf2 is a spread network testing tool written in C++ used for network performance measurements. It creates TCP
or UDP data streams and then measures the throughput of a network that is carrying them. It also permits to set
a lot of parameters (e.g congestion control algorithm, static window size) in order to test a network under different
configurations.
We used this tool during our tests executing it in the server mode on a computer with the following command:

iperf -s

In this way we obtain an Iperf server which is listening on the port 50013. Therefore, depending on which test we were
executing, we used the following general command to create the TCP flow at the sender:

iperf -c $SERVER_ADDRESS -i $TIME_INTERVAL -t $TEST_TIME -Z $CONGESTION -P $N_THREAD

3.1.2 TCP probe

TCP probe4 is a kernel module that saves the state of a TCP connection in response to incoming packets. It inserts
a hook into the tcp_recv processing path using kprobe in order to capture the congestion window and sequence
number, and other parameters such as, the slow start threshold. We used the following command to produce an output
file with all the data captured by tcpprobe.

cat /proc/net/tcpprobe > $PATH/$DESTINATION_FILE

An example of the output file is then given by the following figure.

Figure 1: The output of the tcpprobe kernel module

3.1.3 Dummynet

Dummynet[14] is a link emulator developed under FreeBSD, later imported into other BSD-derived operating systems,
including Mac OS X, and currently also available on Linux, OpenWrt and Windows. It is a part of the operating system
which allows to intercept network traffic and shape it, in orded to simulate the behaviour of one or more network links
with programmable features. It is composed by three parts:

2For more informations, look at http://iperf.sourceforge.net/
3The default port used by Iperf
4http://www.linuxfoundation.org/collaborate/workgroups/networking/tcpprobe
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• dummynet: the emulator itself.

• ipfw: the packet classifier.

• /sbin/ipfw: the user interface.

The first two components run in the kernel of the operating system, and communicate with the user interface through
a control socket.

The emulator - Dummynet The emulator dummynet is used to create multiple ”pipes”. These objects model a
network link with programmable bandwidth, delay and queue size.

Figure 2: The basic components of a Dummynet pipe

There are also pipe configuration options which can be used to specify different queue management policies (e.g.
RED), to model some MAC layer effects such as variable transmission times and link level overheads, and also to
simulate very simple packet drop patterns. More advanced features allow connecting multiple queues to a packet
scheduler running one of several scheduling algorithms, and then sending packets through a link with configurable
features. Furthermore, Dummynet and the basic model shown above (fig. [2]) have been extended and they now
provide a better emulation of wireless and other channels with peculiar MAC protocols, variable transmission rates or
channel errors. In order to do this, the developers of Dummynet introduced two features: delay profiles and varying
links.
Delay profiles use empirical profiles to allow the definition of additional MAC overheads (such as contention, framing,
retransmissions). They compute a random time value, according to the distribution provided by the user, to extend the
trasmission time.
Varying links allow to model the variability of wireless channels (including loss rates and bandwidth) over time due
to some factors such as external interference or mobility.

The packet classifier - ipfw Ipfw is the programmable packet classifier of Dummynet. Its purpose is intercepting
packets in various points of the protocol stack, and decides how to handle them. The packets flow through the network
stack, packet classifier and pipes is represented on Figure [3] below.

Figure 3: The flow of packets through network stack, packet classifier and pipes

Ipfw is configured by writing a set of numbered rules, each containing zero or more options used to match packets,
and one action specifying what to do with matching packets. Matching options include addresses, ports, protocols,

4



protocol flags and various packets metadata, including the virtual server which the packet is associated to, in order to
provide insulation between the different users. Traffic selection is performed by testing a packet against each of the
rules, in numeric order, and performing the action associated to the first matching rule. For our purposes, the actions of
interest are sending the packet to a pipe, which will in turn delaying or dropping the packet as appropriate, emulating
the behaviour of the attached link. After the emulation, the non-dropped packets are sent back into the network stack
for their regular processing.

3.2 Infrastructure
Our infrastructure was mainly composed by two laptops and one MikRotik RB750 router. The figure below shows a
basic scheme of how these machines were linked together.

Figure 4: Main architecture used during our tests

The roles are explained as follows:

1. Server: it had to run iperf in the server mode as shown before.

2. Bottleneck emulator: it was used to simulate different links with different values of latency, maximum band-
width, packet loss etc. between the sender and the server. We used the tool Dummynet shown before for this
purpose.

3. Sender: the sender had to run iperf in the client mode, as shown before, and perform all tests. This includes
using tcpprobein order to retrieve all the data to analyze.

The router MikRotik RB7505 was used because it allows to set the value of the maximum bandwidth directly in
the layer 2 of the stack ISO/OSI, avoiding the problems described in A.1, even though it would be possible to do the
same with Dummynet.
Furthermore, as it can be noticed, we used a single laptop as server and bottleneck emulator.

3.3 TCP parameters
To ensure that the TCP stack had the same configuration on all machines, we used sysctl6 to set some useful
parameters for our evaluation. The most important ones which we changed are the following:

• net.ipv4.tcp no metrics save=1: by default, TCP saves various connection metrics in the route cache when
the connection closes, so that connections established in the near future can use these to set initial conditions.
Therefore, we have enabled this parameter to turn off the cache metrics on closing connections.

• net.ipv4.tcp sack=1: enable select acknowledgments (SACKS).

5http://routerboard.com/RB750
6http://linux.die.net/man/8/sysctl
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• net.ipv4.tcp dsack=1: enable TCP to send ”duplicate” SACKs.

• net.ipv4.tcp window scaling=1: enable window scaling as defined in RFC1323. TCP automatically adjusts
the size of the socket receive window based on the amount of space used in the receive queue.

4 Results
We will now show the results7 of our evaluation and, in particular, the graphics related to the variations of the conges-
tion window and the slow start threshold.

4.1 Test 1 - Bandwidth: 10 Mbit/s, Delay: 0 ms, Packet loss: 0%
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Figure 5: Congestion window and slow start threshold variations - Test 1 - TCP Cubic
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Figure 6: Congestion window and slow start threshold variations - Test 1 - TCP westwood
7Since we have produced a lot of data and results, we show only a summary of the most relevant and meaningful results
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In both cases the average estimated troughput was about 9500 Kbits/s.

4.2 Test 2 - Bandwidth: 10 Mbit/s, Delay: 500 ms, Packet loss: 0%
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Figure 7: Congestion window and slow start threshold variations - Test 2 - TCP Cubic
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Figure 8: Congestion window and slow start threshold variations - Test 2 - TCP Westwood

According to the graphics, the average troughput detected using TCP Westwood was about the half of the one
detected using TCP Cubic. The specific values were respectively 649 and 240 Kbit/s.
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4.3 Test 3 - Bandwidth: 10 Mbit/s, Delay: 0 ms, Packet loss: 5%
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Figure 9: Congestion window and slow start threshold variations - Test 3 - TCP Cubic
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Figure 10: Congestion window and slow start threshold variations - Test 3 - TCP Westwood

Differently from the other cases, the average troughput of TCP Westwood was slightly better than TCP Cubic. The
estimated values were respectively, 6156 Kbit/s for Westwood and 5637 Kbit/s for Cubic.

5 Comments
Reasoning about TCP behavior could be problematic sometimes. One of the reasons is that the results deriving from
its evaluation does not always respect the theory behind it or its specifications because it is necessary to consider the
different implementation, in particular in different operating systems. In addition, the protocol itself is very complex
and it can be hard to model it and predict its behavior, such as the variations of the troughput and latency [15] and
then the behavior of the congestion window, for its non-linearity. For these reasons and for others not stricly related
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to the protocol (e.g benchmark tools, other layers, traffix shaper, hardware etc.), we encountered a broad variety of
problems (see the appendix A) to retrieve relevant data that can be used to analyze TCP Cubic and Westwood during
our experiments, and it was necessary to try several tools and configuration as well as perform several tests, before
being able to state which version is more performant and why.

However, considering our results, in almost all cases the TCP Westwood’s performances were not better than the
TCP Cubic’s ones, and it is possible to state that these results confirmed what it can be expected comparing the two
protocols from a theoretical view.
The main issue behind the low performances of TCP Westwood could be related to the filtering process performed
when it updates the value cwnd. As written in [5], considering a value of τ = 0.5s, if the RTT is greater than
τ/4 = 0.125s we need to re-sample and create virtual samples in order to respect the Nyquist-Shannon sampling
theorem and be conservative. This means that we solely need to have a RTT greater than 125ms, and then a not
negligible value of latency, to affect the sampling and then the bandwidth evaluation. In addition, the protocol relies
on an additive increase strategy that does not allow TCP Westwood to grow fast when far from the maximum available
bandwidth and respond effectively to the dynamic of the network with long delays, as showed in 4.2. On the other
hand, TCP Cubic is completely not dependant to the RTT, and for this reason, it resulted more performant and stable
even with huge delays as it can be expected.

The only case where we noticed a perceptible performance improvement is with a packet loss percentage greater
than 0. In this case, TCP Westwood showed better performances than TCP Cubic, even though we had to increase the
packet loss percentage up to 5%, that is not usual, to see some considerable changes.

Another aspect, not strictly related to the performances, that could be interesting to notice is the congestion window
value’s oscillation or more specifically, the difference between the highest and the lowest value in a single experiment.
As it shown in the graphics (e.g figure 6), using TCP Westwood, the congestion window oscillates more around the
average value than TCP Cubic.

6 Future works
Even though we retrieved enough results to state that TCP Westwood is less performant and how its dependancy to the
Round Trip Time could affect his sampling process, there are a plenty of other scenarios and/or tests that a future and
more complete evalutation of TCP Westwood+ should consider.
For example, it could be interesting to perform the same tests described in this report with multiple and independant
connections but using different pc’s/laptops rather than using the -p option offered by iperf,since we cannot re-
trieve multiple data related to different congestion windows with tcpprobe listening on a single port8. A solution
for this problem could be using more servers listening on different ports. In this way, we can simply run tcpprobe
with the option port=0, retrieving the data related to the traffic on every distinct port.
Another important addition to our work could be performing all the tests another time on different platform or operat-
ing systems (e.g FreeBSD, MacOSX, Windows) in order to obtain a more complete analysis and reason on how these
factors might affect the behavior of TCP.

6.1 Rate Adjustments
The kernel developers have extended the TCP stack of Linux 3.2 to provide ”Proportional Rate Reduction” (PRR)
support. Introduced by a Google employee and described in an IETF draft9, this algorithm is designed to adapt trans-
mission rates to the rates that can be processed by the recipient and by the routers along the way; especially after
reducing the rate to prevent an imminent overload, the algorithm is designed to return to the maximum transfer rate
faster than the previously used method, which is described in RFC 3517 (”A Conservative Selective Acknowledgment
(SACK)-based Loss Recovery Algorithm for TCP”). According to the developer’s measurement results, the algo-
rithm’s faster transfer rates reduce HTTP response times by three to ten per cent.
It could be interesting to analyze how this improvement might influence a congestion control algorithm.

8iperf is able to work on a single port only
9http://tools.ietf.org/html/draft-ietf-tcpm-proportional-rate-reduction-00
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6.2 Correlation
Due to theoretical issues10, the generation of packet loss with correlation does not work properly in the current version
of netem. For this reasons, some researchers at the University of Rome ”Tor Vergata” developed a patch11 for netem
in order to solve this issue. To expand our evaluation, a future research on these topics could use this patch to perform
more complete experiments.
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A Appendix: Problems

A.1 Buffers, netem/tc
Our first tests could have not be used to state anything about TCP Cubic and Westwood since the congestion window
grew too slowly and we almost never end to a ”real”12 congestion. This was mainly due to a mismatch between the
size of congestion window and the queue used in htb13 and tbf14, the packet schedulers that we set while we were using
netem15 as bottleneck emulator. The figure [11] shows the result of one of these tests performed on TCP Westwood16

as example of what could occur and how the congestion window grows in this case. As it can be noticed, there is no
congestion episode and the sender sees no congestion in the link because the queue is never filled and then no packet
is dropped. These tests were performed using either WanEm17, a linux distribution which allows to build a wide area
network emulator based on netem and htb, or netem and htb/tbf alone.
We tried to use these tools on different kernel versions but the problem has not been solved yet and, the queue manage-
ment and netem have not been improved. For example, with the version 3.318 of the linux kernel, setting the maximum
bandwidth of the link at 10Mbit/s, the troughput was about 160kbit/s.
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Figure 11: Congestion window and slow start threshold variations using htb as traffic shaper - TCP Westwood

A.2 TCP probe and 3.0+ linux kernels
At the first steps of our work, we used the 3.0+ versions of the kernel to perform our tests. Unfortunately, tcpprobe
has crashed everytime during our experiments. To solve this we tried an enhanced version of tcpprobe called TCP flow
spy19 developed by Soheil Hassas Yeganeh for collecting aggregated flow level information, but we ended up using
the normal tcpprobe, since we figured it out that it works properly in the 2.6.32 kernels.

12Understanding if there is a real congestion or there is only a mismatch between the congestion window and the queue size is still an open
problem.

13http://luxik.cdi.cz/˜devik/qos/htb/
14http://linux.die.net/man/8/tc-tbf
15http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
16TCP Cubic showed the same behavior. We chose to not show its graphic since it was really similar to this one and therefore not meaningful.
17http://wanem.sourceforge.net/
18We explained these issues in an e-mail that we sent to the netdev linux kernel mailing list. They suggested us to use this particular version.
19For more informations, look at http://www.cs.toronto.edu/˜soheil/
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